Tag: Robotics

Articles

In this post, we introduce our first Meta-RL algorithm: MAML (Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks). With MAML, you can train agents that quickly adapt in almost any dense-reward environment. Let’s detail how it works.

Model Agnostic Meta-Learning made simple

(Part 2/4) In our introduction to meta-reinforcement learning, we presented the main concepts of meta-RL: Meta-Environments are associated with a distribution of distinct MDPs called tasks. The goal of Meta-RL is to learn to leverage prior experience to adapt quickly to new tasks. In Meta-RL, we learn an algorithm during a step called meta-training. At meta-testing, we apply this… Read more »

A simple introduction to Meta-Reinforcement Learning

A simple introduction to Meta-Reinforcement Learning

(Part 1/4) The recent developments in Reinforcement Learning (RL) have shown the incredible capacity of computers to outperform human performance in many environments such as Atari Games [1], Go, chess, shogi [2], Starcraft II [3]. This performance results from the development of Deep Learning and Reinforcement Learning methods like Deep Q-Networks (DQN) [4] and actor-critic methods [5, 6, 7, 8]. However, one essential advantage of… Read more »